
EXAM IMAGE PROCESSING

7-04-2008
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EXAMPLE TEST

Put your name on all pages which you hand in, and number them. Write the total number of pages you
hand in on the first page. Write clearly and not with pencil or red pen. The use of a simple calculator (not
a graphical one) is allowed. Always motivate your answers. Good luck!

Problem 1 (25 pt)
Discrete Laplacian filtering of two variables is given by

g(x, y) = f(x+ 1, y) + f(x− 1, y) + f(x, y + 1) + f(x, y − 1)− 4f(x, y)

where f(x, y) is the input and g(x, y) the output image.

a. Show that Laplacian filtering is a linear operation.

b. Give the 2-D filter mask h(x, y) corresponding to this operation.

c. Give the equivalent filter H(u, v) that implements this operation in the frequency domain. Assume that
the input image has size M ×N .

d. The frequency domain filter satisfies H(0, 0) = 0 (check that your answer in c. satisfies this). What
property of the Laplace filter in the spatial domain does this formula correspond to?

e. Is the Laplacian filter a low-pass or high-pass filter? Explain in terms of the behaviour of H(u, v).

f. Laplacian filtering is very sensitive to noise. Explain why and give a possible remedy.

Problem 2 (25 pt)
Consider a binary image X with 4-connected 1-pixels and 8-connected 0-pixels.

a. We want to select isolated 1-pixels (1-pixels without 4-connected 1-pixels as neighbour) by a hit-or-
miss transformation

ψ(X) := X ⊗⊕(A1, A2).

Give a structuring element pair (A1, A2) which achieves this selection.

b. How does the number of 1-components (connected components of 1-pixels) change under this hit-
or-miss transformation? Same question for the genus (Euler number) g4, which is the number of 1-
components minus the number of holes (connected components of 0-pixels).

Check your answers by the images in the figure below.

• • • • •
• • •
• • • • •

•

(a)

• • •
• • •
• • •

•

(b)

Figure 1: Binary images with isolated 1-pixels.
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Give for both images:

1. the number of 1-components of X and ψ(X);

2. the genus g4(X) and g4(ψ(X)).

c. Is the transformation ψ you have found an increasing mapping? If not, give a counterexample.

Problem 3 (20 pt)
Consider the simple 2-bit image:

1 1 2 3
1 1 2 3
1 1 2 3
1 1 2 3

a. Compute the entropy of this image.

b. Now consider encoding pairs of pixels which are horizontal neighbours instead of single pixels. Assume
that the last pixel of a row is connected to the first pixel in that row, so that there are 16 horizontal
neighbouring pixel pairs. Again compute the entropy, now per pixel pair.

c. Divide the result in b. by 2 to get the entropy per pixel. Why is this entropy smaller than found in a.?

Problem 4 (20 pt)
A simple global iterative threshold selection algorithm is defined by the following steps. Here k is an
integer denoting the iteration number.

1. Put k = 0. Select an initial estimate for the global threshold T (0).

2. Increase k by 1. In iteration k:

a segment the image using the global threshold T (k − 1). This produces two groups of pixels, G1

and G2, consisting of all pixels with values > T (k − 1) and ≤ T (k − 1), respectively.

b compute the mean intensity values m1(k) and m2(k) for the pixels in G1 and G2, respectively.

c compute a new threshold value:

T (k) =
m1(k) +m2(k)

2

3. Repeat step 2 until the change |T (k)− T (k − 1)| is smaller than a predefined parameter value ∆T .

a. Restate this algorithm so that it uses the histogram of the image instead of the image itself.

b. The initial threshold should be chosen between the minimum and maximum values in the image. To
see why, consider an image with a bimodal histogram whose intensities are all above L/2. Analyse
what happens when the initial estimate is chosen as T (0) = 0.
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Formula sheet
Co-occurrence matrix g(i, j) = {no. of pixel pairs with grey levels (zi, zj) satisfying predicate Q}, 1 ≤

i, j ≤ L

Convolution, 2-D discrete (f ? h)(x, y) =
∑M−1
m=0

∑N−1
n=0 f(m,n)h(x−m, y − n),

for x = 0, 1, 2, . . . ,M − 1, y = 0, 1, 2, . . . , N − 1

Convolution Theorem, 2-D discrete F{f ? h}(u, v) = F (u, v)H(u, v)

Distance measures Euclidean: De(p, q) =
√

(p1 − q1)2 + (p2 − q2)2, City-block: D4(p, q) = |p1 − q1|+
|p2 − q2|, Chessboard: D8(p, q) = max(|p1 − q1| , |p2 − q2|)

Entropy, source H = −
∑J
j=1 P (aj) logP (aj)

Entropy, estimated for L-level image: H̃ = −
∑L−1
k=0 pr(rk) log2 pr(rk)

Error, root-mean square erms =

[
1

MN

∑M−1
x=0

∑N−1
y=0

(
f̂(x, y)− f(x, y)

)2
] 1

2

Exponentials eix = cosx+ i sinx; cosx = (eix + e−ix)/2; sinx = (eix − e−ix)/2i

Filter, inverse f̂ = f + H−1n, F̂ (u, v) = F (u, v) + N(u,v)
H(u,v)

Filter, parametric Wiener f̂ = (HtH +K I)
−1

Htg, F̂ (u, v) =
[

H∗(u,v)

|H(u,v)|2+K

]
G(u, v)

Fourier series of signal with period T : f(t) =
∑∞
n=−∞ cn e

i 2πnT t, with Fourier coefficients:

cn = 1
T

∫ T/2
−T/2 f(t) e−i

2πn
T t dt, n = 0,±1,±2, . . .

Fourier transform 1-D (continuous) F (µ) =
∫∞
−∞ f(t) e−i2πµt dt

Fourier transform 1-D, inverse (continuous) f(t) =
∫∞
−∞ F (µ) ei2πµt dµ

Fourier Transform, 2-D Discrete F (u, v) =
∑M−1
x=0

∑N−1
y=0 f(x, y) e−i2π(ux/M+v y/N)

for u = 0, 1, 2, . . . ,M − 1, v = 0, 1, 2, . . . , N − 1

Fourier Transform, 2-D Inverse Discrete f(x, y) = 1
M N

∑M−1
u=0

∑N−1
v=0 F (u, v) ei2π(ux/M+v y/N)

for x = 0, 1, 2, . . . ,M − 1, y = 0, 1, . . . , N − 1

Fourier spectrum Fourier transform of f(x, y): F (u, v) = R(u, v)+i I(u, v), Fourier spectrum: |F (u, v)| =√
R2(u, v) + I2(u, v), phase angle: φ(u, v) = arctan

(
I(u,v)
R(u,v)

)
Gaussian function mean µ, variance σ2: Gσ(x) = 1

σ
√

2π
e−(x−µ)2/2σ2

Gradient ∇f(x, y) = (∂f∂x ,
∂f
∂y )

Histogram h(m) = #{(x, y) ∈ D : f(x, y) = m}. Cumulative histogram: P(`) =
∑`
m=0 h(m)

Impulse, discrete δ(0) = 1, δ(x) = 0 for x ∈ N\{0}

Impulse, continuous δ(0) =∞, δ(x) = 0 for x 6= 0, with
∫∞
−∞ f(t) δ(t− t0) dt = f(t0)

Impulse train s∆T (t) =
∑∞
n=−∞ δ(t− n∆T ), with Fourier transform S(µ) = 1

∆T

∑∞
n=−∞ δ(µ− n

∆T )

Laplacian ∇2f(x, y) = ∂2f
∂x2 + ∂2f

∂y2

Laplacian-of-Gaussian ∇2Gσ(x, y) = − 2
πσ4

(
1− r2

2σ2

)
e−r

2/2σ2

(r2 = x2 + y2)



Image Processing, 7-04-2008 4

Median The median of an odd number of numerical values is found by arranging all the numbers from
lowest value to highest value and picking the middle one.

Morphology

Dilation δA(X) = X ⊕A =
⋃
a∈AXa =

⋃
x∈X Ax = {h ∈ E : A

∨

h ∩X 6= ∅},
where Xh = {x+ h : x ∈ X}, h ∈ E and A

∨

= {−a : a ∈ A}
Erosion εA(X) = X 	A =

⋂
a∈AX−a = {h ∈ E : Ah ⊆ X}

Opening γA(X) = X ◦A := (X 	A)⊕A = δAεA(X)

Closing φA(X) = X •A := (X ⊕A)	A = εAδA(X)

Hit-or-miss transform X ⊗⊕(A1, A2) = (X 	A1) ∩ (Xc 	A2)

Thinning X ⊗A = X\(X ⊗⊕A), Thickening X �A = X ∪ (X ⊗⊕A)

Morphological boundary βA(X) = X\(X 	A)

Morphological reconstruction Marker F , mask G, structuring element A:
X0 = F , Xk = (Xk−1 ⊕A) ∩G, k = 1, 2, 3, . . .

Morphological skeleton Image X , structuring element A: SK(X) =
⋃N
n=0 Sn(X),

Sn(X) = X	
n
A \ (X	

n
A)◦A, whereX	

0
A = X andN is the largest integer such that SN (X) 6= ∅

Grey value dilation (f ⊕ b)(x, y) = max
(s,t)∈B

[f(x− s, y − t) + b(s, t)]

Grey value erosion (f 	 b)(x, y) = min
(s,t)∈B

[f(x+ s, y + t)− b(s, t)]

Grey value opening f ◦ b = (f 	 b)⊕ b
Grey value closing f • b = (f ⊕ b)	 b
Morphological gradient g = (f ⊕ b)− (f 	 b)
Top-hat filter That = f − (f ◦ b), Bottom-hat filter Bhat = (f • b)− f

Sampling of continuous function f(t): f̃(t) = f(t) s∆T (t) =
∑∞
n=−∞ f(t) δ(t− n∆T ).

Fourier transform of sampled function: F̃ (µ) = 1
∆T

∑∞
n=−∞ F (µ− n

∆T )

Sampling theorem Signal f(t), bandwidth µmax: If 1
∆T ≥ 2µmax, f(t) =

∑∞
n=−∞ f(n∆T ) sinc

[
t−n∆T

∆T

]
.

Sampling: downsampling by a factor of 2: ↓2 (a0, a1, a2, . . . , a2N−1) = (a0, a2, a4, . . . , a2N−2)

Sampling: upsampling by a factor of 2: ↑2 (a0, a1, a2, . . . , aN−1) = (a0, 0, a1, 0, a2, 0, . . . , aN−1, 0)

Set, circularity ratio Rc = 4πA
P 2 of set with area A, perimeter P

Set, diameter Diam(B) = max
i,j

[D(pi, pj)] with pi, pj on the boundary B and D a distance measure

Sinc function sinc (x) = sin(πx)
πx when x 6= 0, and sinc (0) = 1. If f(t) = A for −W/2 ≤ t ≤ W/2 and

zero elswhere (block signal), then its Fourier transform is F (µ) = AW sinc (µW )

Spatial moments of an M ×N image f(x, y): mpq =
∑M−1
x=0

∑N−1
y=0 xp yq f(x, y), p, q = 0, 1, 2, . . .

Statistical moments of distribution p(i): µn =
∑L−1
i=0 (i−m)n p(i), m =

∑L−1
i=0 i p(i)

Signal-to-noise ratio, mean-square SNRrms =
∑M−1
x=0

∑N−1
y=0 f̂(x,y)2∑M−1

x=0

∑N−1
y=0 (f̂(x,y)−f(x,y))

2

Wavelet decomposition with scaling function hφ, wavelet function hψ . For j = 1, . . . , J :
Approximation: cj = Hcj−1 =↓2 (hφ ∗ cj−1); Detail: dj = Gcj−1 =↓2 (hψ ∗ cj−1)

Wavelet reconstruction with dual scaling function h̃φ, dual wavelet function h̃ψ . For j = J, J − 1, . . . , 1:
cj−1 = h̃φ ∗ (↑2 cj) + h̃ψ ∗ (↑2 dj)

Wavelet, Haar basis hφ = 1√
2
(1, 1), hψ = 1√

2
(1,−1), h̃φ = 1√

2
(1, 1), h̃ψ = 1√

2
(1,−1)
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Answers

Problem 1

a. Let the input be a linear combination of two input images: f(x, y) = a f1(x, y) + b f2(x, y). Then

g(x, y) = a f1(x+ 1, y) + b f2(x+ 1, y) + a f1(x− 1, y) + b f2(x− 1, y) + a f1(x, y + 1)

+ b f2(x, y + 1) + a f1(x, y − 1) + b f2(x, y − 1)− 4a f1(x, y)− 4b f2(x, y)

= a
[
f1(x+ 1, y) + f1(x− 1, y) + f1(x, y + 1) + f1(x, y − 1)− 4f1(x, y)

]
+ b

[
f2(x+ 1, y) + f2(x− 1, y) + f2(x, y + 1) + f2(x, y − 1)− 4f2(x, y)

]
= a g1(x, y) + b g2(x, y)

So the output is the same linear combination of the outputs of the individual input images. Hence the
operation is linear.

b. The mask is:

0 1 0

1 -4 1

0 1 0

c. The frequency domain representation H(u, v) is the DFT of the spatial filter kernel h(x, y). If the center
of the mask is assumed to be at (0, 0), then we see that h(0, 0) = −4, h(1, 0) = h(−1, 0) = h(0, 1) =
h(0,−1) = 1. So, working with positive and negative indices (compare Fig. 4.23 of the course book),
we get

H(u, v) =

M/2−1∑
x=−M/2

N/2−1∑
y=−N/2

h(x, y) e−i2π(ux/M+v y/N)

= −4 + ei2πu/M + e−i2πu/M + ei2πv/N + e−i2πv/N

= −4 + 2 cos(2πu/M) + 2 cos(2πv/N)

The centered version of the filter transfer function is:

H(u, v) = −4 + 2 cos(2π[u−M/2]/M) + 2 cos(2π[v −N/2]/N)

Now the center is at (M/2, N/2).

This form can also be obtained by working with nonnegative indices only. In that case h(x, y) is first
multiplied by (−1)x+y before computing the DFT (compare section 4.7.3 of the course book).

d. H(0, 0) =
∑M−1
x=0

∑N−1
y=0 h(x, y), i.e.,H(0, 0) = 0 means that the sum of the coefficients of the Laplace

filter in the spatial domain is zero. Since G(u, v) = H(u, v)F (u, v) it also means that the sum of the
pixel values of the filtered image g(x, y) will be zero.

e. Laplacian filtering emphasizes sharp transitions in images, so it is a high-pass filter. This is reflected
in the (un-centered) transfer function: H(u, v) = 0 at the origin and its magnitude increases when |u|
or |v| increase. So the DC-component is suppressed and higher frequencies are passed, which is the
characteristic of a high-pass filter.

f. Laplacian filtering is a discrete version of a second order derivative. So it will also emphasize noise
pixels, which represent local transitions in grey value. A possible remedy is to low-pass filter the image
before taking the derivative, for example by Gaussian smoothing. (Equivalently, applying the Laplacian
of a Gaussian function.)



Image Processing, 7-04-2008 6

Problem 2

a. Take A1 = →↓• A2 =
•

• →↓ •
•

.

b. The number of 1-components decreases, genus can increase or decrease.
Fig. 1(a):

1. number of 1-components of X: 2; of ψ(X): 1;

2. genus g4(X) = 2− 2 = 0; and g4(ψ(X)) = 1− 0 = 1.

Fig. 1(b):

1. number of 1-components of X: 2; of ψ(X): 1;

2. genus g4(X) = 2− 0 = 2; andg4(ψ(X)) = 1− 0 = 1.

c. ψ is not increasing. Counterexample: create an image Y by adding one 1-pixel to Fig. 1(b) (picture
below). Now ψ(Y ) = ∅.

• • •
• • •
• • •
•
•

Problem 3

a. We can make the following table:

Intensity Count Probability
1 8 1

2
2 4 1

4
3 4 1

4

The entropy of the image is thus:

H̃ = −
L−1∑
k=1

pr(rk) log2 pr(rk)

= −
[1

2
log2

1

2
+

1

4
log2

1

4
+

1

4
log2

1

4

]
= −

[1

2
· (−1) +

1

4
· (−2) +

1

4
· (−2)

]
=

3

2
bit/pixel

b. Now we can make the following table:

Intensity pair Count Probability
(1,1) 4 1

4
(1,2) 4 1

4
(2,3) 4 1

4
(3,1) 4 1

4
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The entropy is thus:

H̃ = −
L−1∑
k=1

pr(rk) log2 pr(rk)

= −4
[1

4
log2

1

4

]
= 2 bit/pixel pair

c. The entropy per pixel is thus 1 bit/pixel. It is smaller than found in a. because the intensity values are not
statistically independent, but are correlated.

Problem 4

a. Let pi = ni/n, or 0 ≤ i ≤ L− 1, where ni is the number of pixels with intensity i, n is the total number
of pixels in the image, and L the number of intensities. In step k the means can be computed by

m1(k) =
1

P1(k)

I(k−1)∑
i=0

ipi, m2(k) =
1

P2(k)

L−1∑
i=I(k−1)+1

ipi

where

P1(k) =

I(k−1)∑
i=0

pi, P2(k) =
L−1∑

i=I(k−1)+1

pi

and I(k − 1) is the smallest integer less than or equal to T (k − 1).

b. Let T (0) = 0. Since all image values are greater than L/2, all pixels will be assigned to group G1. So
m1(1) will be the mean value, say M , of the image and m2(1) will be 0. Hence T (1) will be M/2. But
M < L, so M/2 < L/2. This means that there will be no pixels with values smaller than T (1). Hence
m1(2) = M , m2(2) = 0 and again the threshold T (2) = M/2. So the algorithm will terminate with the
(wrong) threshold M/2.


